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Summary — For the task of achieving a given flight range, and with some overall assump-
tions about the structural and propulsive elements and a simple set of supersonic aero-
dynamics, box sizes with certain relations between span and length are determined, into
which a supersonic aircraft must fit. Various layouts are then discussed, with suitable
types of flow which not only give the required performance but are also acceptable for
engineering purposes. The yawed wing, the swept wing-fuselage combination, and the
slender wing are shown to offer potential solutions, each of these designed to have the
same type of flow throughout its flight range. Slender wing aircraft are considered in
more detail and some theoretical and experimental results are given.

• Introduction

As seen in retrospect, the first 50 years of aeronautical engineering have
been dominated by one characteristic shape of the practical aeroplane

on the one hand and Prandtl's boundary-layer and aerofoil theories on

the other. With these two aspects, aerodynamic theory and aircraft design

most happily complemented one another. It is now time to realize that

the classical aircraft shape constitutes a highly restrictive class of bodies

and that classical aerodynamics amounts to the study of one special case

of general fluid flow only. The future of aeronautics, with the pros-

pect of almost unlimited available power and attainable speeds, there-

fore. requires not only the extension of existing theories to include thermo-

dynamic and real-gas effects; it also requires the introduction and the
study of new characteristic shapes and new types of flow, which again

should suit one another as perfectly as was true for the classical aircraft
and classical aerodynamics.

To explain the procedure we adopt in arriving at such new shapes,
now for supersonic flight speeds, we begin with a brief recapitulation

of how this procedure can be applied to the classical aircraft, for the

simplest task: that to achieve a given flight range. After that, we are going

to discuss the changes brought about by new means of propulsion and

by the new set of supersonic aerodynamics. This is followed by a discussion
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of some possible solutions, which include swept wing-fuselage combi-
nations, yawed wings, and slender wings. Only the latter involve an entirely
new type of flow and this is discussed in some detail.

It is gratefully acknowledged that many of the findings reported here
are the results of a concerted research effort on a large scale, in which
most British aircraft firms and research establishments have been engaged
over the last 3 or 4 years. The responsibility for the presentation and the
conclusions is, of course, the author's.

2.  Prolegomena Concerning the Classical Aircraft

We consider the simplest and most obvious task which an aircraft is
required to perform, namely, to fly from one place to another and so
to achieve a given flight range. Hence, according to Bréguet, a certain
value of

Range =  /—V,x(L.D)xln  (1171,.W.1-1 (1 )

must be obtained. This equation contains a structural component—the
ratio between the initial weight and the final weight, including fuel; an
aerodynamic component the ratio LD between lift and drag at cruise;
a speed term—the cruising speed V0; and a propulsion term—taken here
as the specific impulse,  I,  of the powerplant;  I  is inversely proportional
to the specific fuel consumption. It is evident from Bréguet's equation
alone that aircraft design is a compromise between structural, propulsive,
and aerodynamic ingredients. However, our contention is that, with only
a rudimentary knowledge of the structural and propulsive components,
the aerodynamic component alone is sufficient to determine the general
layout of the vehicle in the cases considered.

We now introduce some restrictions and stipulate that the aircraft
should fly at subsonic speeds and, further, that it should be so designed
that the means for providing stowage volume, lift, and propulsion are
separate. If propulsion is to be obtained by propellers driven by piston
engines, then we are concerned with what are basically constant-horse-
power engines so that for each individual engine the product of / and
Vo remains roughly constant, not / itself. Again, for the whole family
of piston-propeller engines, a higher required thrust at some higher flight
speed implies a higher specific fuel consumption and a lower specific
impulse so that, to a first order, the value of /x170 may be taken as lying
within a certain band, independent of the flight speed. On the structural
side, it is sufficient to assume it to be known that no drastic changes in
the weight factor occur with flight speed so that the value of W :IV can
be taken to lie within a certain band again, somewhere between 1 and
2, say. We are then left with the aerodynamic side where it is required
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that certain values of the lift-drag ratio be achieved; these may be taken
as lying within a band between 15 and 25, for so-called long ranges.

We now proceed to show that such an aircraft, which consists of a sep-
arate volume-carrying fuselage, separate engines, and a separate lifting

surface, and which is to achieve the required values of the lift-drag ratio,

must have some characteristic dimensions, namely, an aspect ratio  A

— 4s',  S  of the order 10, without invoking any detailed knowledge of

its actual shape.

The drag of the aircraft will consist in part of skin friction forces along
its surfaces and a slight form drag; these can be taken together in a coef-

ficient C„ which may be assumed to be independent of the lift force
to a first order. C„ = 0.01 is a typically good value. The other part will

be related to the mechanism by which the lift force is produced. Recalling
physical principles first stated by Prandtl and Munk, we may say that

the lift force must be associated with a downward momentum of the air

behind the wing, and this in turn leads to a loss of kinetic energy and
thus a drag force, the "vortex drag'', which may be written as

CDL KCZ - (2)

where

is the virtual mass of air moved by the wing, with Vo the forward speed

and 2s the overall span of the wing. The as yet unknown factor  K  is of
the order of unity for both planar and non-planar lifting systems.

With the overall drag of the form

C. — - Cj2 (3)

:TA

the lift-drag ratio can be determined and comes out to have a maximum

value

f A
1

4;CDF 2 j CDIICDL

when

:TA C CD,
- - 


K
„

C„

i.e. when C„, = CD„. For the present purpose, and anticipating later


steps in this procedure, it may be accepted that the best range is in fact

not obtained when the aircraft is designed to fly at the C, which gives
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the maximum value of  LID  but that engine and weight considerations

lead one to fly at a CL-value slightly below that, typically at

CL= I 2 CL„ = - I 2 1/ - CDF2 ' 2  r K

in which case

L\ / 2:TA
D 9 \ Dj„, 9K CDF

Because it is immaterial to the present investigation which value of  LID

is takcn, it is this value of  LID  that is considered in most numerical

examples, unless otherwise stated.

For a required value of  LID,  equation (7) may be regarded as deter-

mining the aspect ratio which is needed:

A = KCDF(
L)29
D

•

Typical values of  A  obtained in this way with  K= 1 are:

Values of A (and of C1)

15

6







for  LID  —

when CDF :-- 0-01 3

(0-22)

25

9
(0.38)(0-30)

when Cor 0.015 5913
(0.34)(0.45)(0.56)

On the whole, these values are of the order of 10 (i.e., not 1, nor 100),
and even drastic changes in the values of  K  and  GI,  cannot alter this

basic result.*

Proceeding further with this hypothetical aerodynamic development of

the classical aircraft, we now come to the aerodynamic design problem,

namely, to investigate Whether shapes can be found which have, in fact,

the assumed physical properties and whether the type of flow implied

is usable in engineering practice, i.e., whether it is steady and control-

lable and whether it can be maintained also in off-design conditions,

preferably throughout the whole flight range, limiting our attention from

now on to relatively thin wings, the spanwise extent of which is of an

* It should be borne in mind that equation (8) determines a "minimum aspect ratio
for a given set of conditions and that the designer is at liberty to choose a higher aspect
ratio. In that case, a higher payload may be carried provided that the saving in fuel
due to the higher aspect ratio was greater than the cost in structure weight of achieving it.
In the present context, this only strengthens the conclusion that classical aircraft are
likely to have wings of moderate or large aspect ratio.
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order greater than its streamwise extent, and to which a volume—pro-
viding fuselage and engines can be attached without any first-order inter-

ference. It will suffice here to recall that classical aerodynamics in the

dual form of classical aerofoil theory and boundary-layer theory is admir-

ably suited to deal with the wings of high aspect ratio with classical aerofoil

sections that emerged, and fits the required conditions perfectly.

In particular, it is recalled that the shapes under consideration allow

the assumption to be made that the flow over the wing is dominated by
the characteristics of a two-dimensional flow in streamwise planes; and

that the flow over the fuselage is basically that past an essentially non-

lifting body of revolution. Further, there exists a two-dimensional type

of flow in which viscous effects are confined to a thin boundary layer

and wake. The body which gives rise to this flow possesses a sharp trailing

edge so that the separation is confined and fixed to the trailing edge.

Therefore, the trailing vorticity which is associated with the lift force

is shed in the form of an essentially planar sheet. Also, it is possible to

control this flow and its associated forces and moments so as to achieve

a sufficient range of practical flight manoeuvres while keeping the sep-

aration at the wing trailing edge and, thus, maintaining essentially the

same type of flow throughout. This type of flow also gives the best per-

formance and handling qualities, compared with any other possible flow,

and it has been generally agreed for 50 years that the greatest efforts should

be made to maintain it. For a further discussion of the aerodynamic design

problem, we refer to a paper by Maskellm and for an account of the

relevant theories and observations in this light to a recent book by

Thwaitest2).
In the present context, we note that within the aerodynamic system

with the classical type of flow, equation (2) and the subsequent relations

are very good approximations to the observed facts so that the procedure

adopted is both consistent and realistic. Also, none of the often drastic

developments in the fields of structural design, propellers and piston

engines have changed the fundamental aerodynamic characteristics of

the family of aircraft so obtained. Indeed, so successful was this family

of aircraft that many of its features have come to be regarded as funda-

mental to any aircraft, whether supersonic, hypersonic, or of the VTO

type, and, when jet engines made supersonic flight possible, it was assumed

as a matter of course that a volume-providing non-lifting fuselage would
have to be attached to a separate thin wing to do the lifting, with separate

engines for propulsion. On the aerodynamic side, we thus proceeded

automatically to investigate bodies of revolution and thin two-dimensional

aerofoils at supersonic speeds and although it was found that their prop-

erties radically differed from those which, at low speeds, had led to the

15
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classical aircraft, missiles and aircraft of the same basic layout were, and
still are, actively pursued. As a consequence, we had to live with what
has been described as "lousy flows".

We believe that this development was a mistake and propose, therefore,
to start again and investigate whether a procedure similar to that just
explained but with different initial assumptions may lead us to more
natural and more efficient solutions for flight at supersonic speeds.

3.  New Aerodynamic Requirements

We still consider the simple task of achieving a given flight range, ac-
cording to equation (1), but now at mainly supersonic speeds. There is
no reason to suppose that the structural term will radically change by
an order of magnitude. But the propulsion term differs fundamentally
from that of the propeller-piston engine combination if we now consider
jet engines that are the outcome of the one major development without
which supersonic flight could not be contemplated. For jet-engine pro-
pulsion, the specific impulse, and the specific fuel consumption, stay
roughly constant over a certain speed range for each individual engine
as well as for the whole family of eneines. They are basically "constant-
thrust" rather than "constant-power" engines. Thus the value of  I  in
equation (1) lies within a certain band, independent of the flight speed.
As a consequence on the aerodynamic side, the product  Vx(LID)  or
R= Mx(LID)  is required to have certain N,alues rather than  LID  itself.

In principle, this aerodynamic requirement may be considered to apply
through the whole Mach number range where air-breathing engines can
be used, up to  M =  10 perhaps. We must be prepared to find, however,
that additional conditions, under which the given flight range is to be
achieved, may be made such as those which may result from considerations
of aerodynamic heating. Further, engine performance is likely to change
with Mach number, to a second order, and while we can say that typical
values of  R= MLID  lie between 15 and 30, a practical variation of the
required value of  LID  with Mach number may be less drastic. As a rough
guide, values of  R=  4 (M+3) may be regarded as "good" ones for long
ranges of the transatlantic order up to  M = 5  or 6, say. This gives

LID 14 10• 8Î 7 6

for  M 1.2 2Î 3' 4 6

Slightly lower values can probably be tolerated. The drop in the required
value of  LID  with Mach number has far-reaching consequences on the
layout of the aircraft.
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4. A Set of Supersonic Aerodynamics

Whereas we can see already that the reduction in the required value of
L D at supersonic speeds should lead to smaller values of the aspect ratio—
A  would be less than q at  M =  2 if equation (8) would still apply, with
K = 1  and CDF = 0.01 — still another aspect demands our attention,
namely, that a new set of aerodynamics is needed, because equation (8)
and its basis can no longer be considered adequate. This must take account
of the fact that wave drag terms appear, resulting from the volume and
from the lift of the aircraft and depending primarily on the lengths of
the volume and of the lifting surface. Most of what now follows will be
explained by means of the simplest example where the length of the volume
is the same as that of the lifting surface, in contrast to common practice.
This is also the most realistic case because we shall find that it is very
difficult, if not impossible, to make a volume-providing body non-lifting
and to provide a lifting surface without volume. In this sense, most con-
figurations cannot help being such that volume and lifting surface are
"integrated".

A suitable set of eeometric parameters is needed first. Apart from the
wing area,  S,  three further parameters must account for the overall
lenght,  1,  the overall span, 2s, and the overall volume,  V,  of the wing
or body, whatever its shape. Following Collingbourne, a consistent and
convenient set is given by:

the semispan-length ratio

p = a planform shape parameter
2s1

V
T — 	 a volume parameter

S312

p is the ratio betw een the wing plan-area and the area of the circumscribed
rectanele with the same span and length. p =112 for wings of delta plan-
form. Note that the aspect ratio is then

A 2 Sfl
— (11)

It is not an independent parameter.  A  is increased by increasing the semi-
span-length ratio for constant p or by decreasing the planform shape
parameter for constant  sll.

Four principal terms contribute to the overall drag of the aircraft in
the set of aerodynamics considered here:

(1) Skin-friction drag along the surface of the aircraft, leading to the
drag coefficient CDF as before.




15.
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(2) Wave drag resulting from the volume of the aircraft. This can
conveniently be defined as:

128 V2 512 \2

T2 P2—. 1) K°
(12)

where K, is a non-dimensional factor which can be determined by theory or
experiment. Equation (12) takes account of the fact that V2 and 1// are
the dominant factors for many configurations; the value of K, then depends
primarily on the shape of the body enclosing the given overall volume.
A value for K0 of unity is typical for well-shaped bodies of revolution;
in fact, K, =  1 corresponds to the Sears-Haack body.

(3) Wave drag resulting from the lift on the aircraft. This can be written
in the form:

	

2 1
CDLW =

S C
- - L K C2 p 132 K

Again, it is convenient to isolate the dominant factors cy,, 1112and /32
for most configurations; the drag factor K, then depends primarily on
how the given overall lift is distributed over the surface at the given Mach
number. For slender wings, K0. — 1 when the load is elliptically distributed
along the length, corresponding to the well-known "lower bound" of
R. T. Jones"). Thus the definition of Kw is consistent with that of K,,
both K„ =  1 and K = 1 being obtained with the same kind of approxi-
mation.

(4) Vortex drag resulting from the lift on the aircraft. This can be left
in the classical form, as in equation (2),

S C2,

	

1 p
C2CDLV

v
4:7  s

V2

	

27r  LS11Ky (14)

because it is still convenient for many configurations which fly at super-
sonics speeds to isolate C and 1/s2 as the dominant parameters. Kv — 1
is still obtained in inviscid flow for certain wings with planar vortex sheets
when the load is elliptically distributed along the span.

We note here, and shall explain in some more details later, that values
of unity for any of the drag factors K„, Kw , and 4. must not be regarded
as minimum values. It will be possible in all cases to obtain values below
unity. K, = Kw = KV =  1 only serve as convenient standard units.

In what follows, only these four drag terms will be used and the im-
portant assumption will be made that they are additive. Hence

s  2
CD = CDF+

512
-1-2132

)
Ko

1 p
Cy, [4+ ICW2,82(s)]2 (15)

7r / 27r 1

CDW

(13)



Aircraft Shapes and their Aerodynamics 229

which replaced equation (3) and has been derived in much the same way
and with similar approximations. Adding the drag terms is a convenient
and adequate approximation for many configurations; it is slightly less
convenient for configurations where interference terms play a major part
such as those where part of a volume-providing body is meant to interfere
with a lifting surface or whether a propulsion unit is installed so as to
interfere favourably with volume and lifting surface; it is also less con-
venient for configurations where essentially non-linear lift forces occur
at cruise. However, equation (15) can still be used in all these cases pro-
vided care is taken in determining the values for the drag factors. For
example,  Kv  may depend on  CL.

5.  Drag Forces and Overall Dimensions Obtained with this Set of Aerodynamics

We can now determine some characteristic dimensions for all aircraft
ithin this set of aerodynamics, without specifying detailed shapes and

properties. To begin with, we realize that a compromise must be found
between overall span and length of the aircraft, for a given wing area,
because the drag tends to be very large when the span is too small (third
term in equation (15)) and again when the length is too small (second and
fourth terms in equation (15)). There must be a value of the ratio between
span and length, i.e., of  sll  for given  p  or of  f3s11 for given  M,  at which
CE, is smallest.

Comparing equation (15) with the earlier equation (3) for the classical
aircraft, where the drag was the lower the higher the span, we now have  s,'I
occurring both in the denominator (of the vortex drag term) and in the
numerators (of the wave drag terms) so that we can state immediately
that it will pay to use as low a value of  p  as possible and that a best "box
size",  sd,  will then follow, all this on aerodynamics grounds along without
involving matters of structure or propulsion. This is demonstrated in
Fig. 1*; it is an obvious consequence of the characteristic behaviour
of the different drag terms. Curves for different C, values are drawn
in Fig. 2, which displays a region within which the lift-drag ratio LID
is highest. This value is of the required order. Also shown is a line

* To make the numerical values somewhat realistic, most values, unless otherwise
stated, have been chosen to be typical of a large airliner to fly in the medium Mach
number range, of  S =  6000 ft.' wing area and a volume parameter r = 0.04, at between
35,000 ft. altitude at M — 1 and 75,000 ft. altitude at M = 5, with fully turbulent boundary
layer, assuming the wanted area to be twice the wing planform area. In some cases,
Figs. 1, 2, and 14,  IC,  has been varied in a way approximating that of a particular
thickness distribution ("Lord V"):

1 —1• 5 I.Ly/1
K0  = 1. 17 	

1, 4

The drag of this particular thickness distribution is considered by itself in Fig. 12.
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CL along which the  CL  value is a given fraction of the value,

CL„„  at which the highest LID is reached for As =  const.; as stated


earlier, one might cruise near this line, for non-aerodynamic reasons.

Along such a line (C, = CL„,/I 2), LID reaches a maximum value for


a certain  sll  or fis/1, for a given value of T. Similarly, values of -r can be

0-025
Co 0-1

0-020


0 • 015

CD

0-010

0 • 005

.. •
LIFT VORTEX •••••

• THICKNESS- WAVE

FRICTION

0-2 0.4 0-6 s 0-8 1-0

A

	

FIG. 1. Typical drag coefficients at Af - - 2  p =  1/2 j = 0.04 A — 1 — I

S 6000 FT 2.

plotted along again along such lines, for required values of LID and
these curves show again maxima, i.e., thickest wings, for values of 511,
which are very close to those obtained before.

The main conclusion to be drawn from these results is that the best
lift-drag ratios or thickest wings are obtained when 19.5,11 is well below
unity—near 0.35 in this case where  M =  2, so that is near 0-2. We
thus obtain a "box size", into which the aircraft must fit. This varies
with Mach number, and typical values are  =  0.4 for  M =  1.2;  =  0.2
for  M =  2;  =  0-1 for  M =  5. So the box becomes narrower as the

design Mach number is increased. As the main geometric characteristic,

0
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this box size assumes for supersonic configurations the part played by the
aspect ratio for the classical aircraft.

As a result of many similar calculations we find that the best box size
is not very sensitive to the actual values of the other parameters and drag
factors, and that even drastic changes in the latter make very little differ-

0- 025


0-0 20


0-015

CD

Coo-15

evia

449'

cri•/

0005

0

9

0•20.4 0-6 9 0.8
A  Z

1•0

FIG. 2. Typical drag coefficients at Af = - 2  p =  1/2 fl = 0.04  K,, = K„, ---1

S =  6000  FT 2.

ence. Smaller values of the planform parameter p correspond to slightly
wider boxes; better (i.e. smaller) values of  Ko  allow wider boxes; as do
better values of  K„,  and worse values of IC, . Generally, worse (i.e. higher)
values of Ko, K,„ and K eive lower LID  for a given -r or restrict T to lower
values for given  L !D;  whereas lower values of p improve matters. Further,
if the wetted area is essentially mater than twice the planform area, then
LID  is generally lower and best values occur at slightly higher values of

This general result is not substantially changed if configurations are
considered where the length of the volume differs from that of the lifting
surface, assuming for the moment that such configurations could be realized
in practice. The extreme case of this kind is evidently obtained when only
the last two terms in equation (15) are assumed to depend on s/I or, what is
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equivalent, when x is assumed to be zero. In that case dC,10(sll) = 0,

i.e., the drag is lowest and LID highest, when

R s // K,
(16)

/ 2Kw

so that < 0-707 since in most cases K e K. A small but non-zero

thickness will bring the value of PsIl for the best LID well below 0.707.

We can, therefore, draw an important conclusion without knowing any

details of actual configurations, namely, that the box size into which an
aerodynamically efficient supersonic aircraft must fit is always less wide

than long and that the box becomes the narrower the higher the Mach

number. As a rough guide,

sIl lies between 0.3 and 0.4 and t3s,'Iis about 0.2 at M = 1.2;

lies between 0.15 and 0.25 and tisll is about 0.35 at M = 2;

lies between 0.05 and 0.15 and usll is about 0.5 at M = 5.

This means that the aircraft, whatever its detail shape, should always lie

well within the Mach cone from its nose.

This result corresponds to that obtained earlier: that the classical air-
craft normally has wings of moderate or large aspect ratio; and in the

same way as that allowed us to restrict ourselves to what we call classical

aerodynamics, we shall now attempt to use this new result to select such

shapes which appear promising and cultivate their aerodynamics, and to

leave others out altogether. At the same time, we shall try to follow the

classical example in directing our attention towards the aerodynamics of

such flomrs which physically exist and which are acceptable for engineering

purposes. With this approach we differ from much of past practice in

supersonic aerodynamics and design in two main respects: As a rule,

thickness and lift effects have been treated and "optimized" separately;

all too often, "optimum" layouts have been devised on the basis of theo-

retical flow s to which nothing corresponded in nature.* When, as a result,

the actual flows were "lousy", some of us resigned ourselves to this

as an apparently unavoidable state of affairs and so a long string of

patent-cures-in-a-small-way has appeared over the last 10 or 15 years.

6. Some Possible Solutions

Our next task is to fill with realistic aircraft shapes the boxes previously

determined. Some of these are shown in Fig. 3, with some slight adjust-

ments depending on the particular configuration used in anticipation

of later results. As will be seen, we propose to deal with a swept wing-

* A typical example of this was given in Fig. 7 of R. T. Jones paper") at the last
Congress.
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fuselage combination, with a slender wing, and with a yawed wing as

suggested 20 years ago by E. von Ho1st and taken up again by R. T. Jones")
at the first Congress of this Council.
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Flo. 3. Some typical aircraft shapes.

We do not propose to deal with a number of other layouts. Near-rec-
tangular thin wings on a discrete fuselage are left out because their neces-

sarily short lifting length must lead to high values of at least Kw so that

their performance is altogether too poor, if the fuselage is non-lifting.

If a fuselage with usually near-circular cross-sections is meant to lift,

it must be ruled out as unsuitable for engineering applications because

it is known that the separation lines cannot then be fixed so that the flow

=0• at =0.6
w

=025 U-038

M = 1.2

At=0-25 i=oas
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is essentially unsteady and liable to lead to asymmetries and the shedding
of free vortices. Further, the flow over wing and fuselage is bound to
change radically throughout the flight range. Similar reasons can be ad-
vanced against the use of other combinations of fuselages and thin wings
with supersonic leading and/or trailing edges, such as some wings with
planforms of delta, lozenge, or arrowhead shape. In some cases, flow
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FIG. 4. Lift-drag ratios of yawed wings at M — 2 /3 — 0.04  S =  6000  FT, .

separations involving vortex sheets from near the leading edge in combi-
nation with highly swept trailing edges must be expected to lead to highly
complex flow patterns with shock waves within the wing chord at transonic
and supersonic speeds and the possibility of split trailing vortex sheets,
which implies high vortex drag and non-linear pitching moments limiting
the usable lift.

Sample properties of yawed wings which provide volume and lift
simultaneously are shown in Fig. 4• * They have been determined by Smith(51

* The values shown here are considerably lower than those of R. T. Jones") mainly
because realistic values of the volume have been taken.
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who extended earlier theories to cover thick wings. We find that the general
level of  LID  is of the order required from earlier performance considera-
tions. We also find that the angle of yaw should lie within a fairly narrow
band for best efficiency. The lift-drag ratio falls steeply if the angle of yaw is
too high and the enclosing box too narrow (q-  = 90° where the curves end
on the left-hand side), and again if the angle of sweep is too low and the
box too wide (the mean spanwise direction is sonic where the curves end
on the right-hand side). So this particular example confirms the earlier
general statement that wings should lie well within the Mach cone from
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FIG. 5. Angles of sweep required for swept NA.ings, according to Bagley (1956).

(Sections with 30% roof-top pressure distributions.)

the apex. From the practical point of view, there is no need to concern
ourselves with flows past wings with sonic or supersonic edges. A type
of flow which could physically exist and be acceptable at the same time is
the classical aerofoil flow with separation along the trailing edge only
(Kutta condition). By reducing the angle of yaw at flight speeds below
the cruise, this type of flow could be maintained, in principle, throughout
the whole flight range. Its subsonic character can be maintained even
at supersonic speeds because the Mach number component normal to the
line of sweep is subsonic, of the order 0.7. However, there are further
conditions to be satisfied in order to achieve this flow. R T. Jones") has
already pointed out that the CL must be limited but this is not all: the
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thickness of the wing and the details of the pressure distribution alone

the surface come into it, too. Bagley's work(61 is relevant here and we

quote one of his results for wings of infinite span in Fig. 5, showing values

of tic, 9, CI, and M which, in the right combination, can keep the flow

just subcritical and of the classical type.

There are a great many other, as yet unsolved, difficulties to be over-

come in order to maintain this type of flow, and failure to solve these
would make results such as those in Fig. 4 meaningless and the whole

scheme unacceptable in practice. Some are related to the design of the
ends of the wing where the full sweep of the isobars must be maintained.

Others are concerned with the stability and control of such wings and,

by no means least of all, the economic utilization of the volume inside

the wing for the purpose of accommodating passengers and other loads

will present an exceedingly difficult task. At present, therefore, the yawed-

wing aircraft would appear to be a very instructive example but not a really

practical proposition.

A much more promising picture emerges when considering swept wing-

fuselage combinations. This is the one case so far where it is reasonable

to make a distinction between the length, 1, of the volume-providing body

or fuselage and the lifting length, /, of the wing: In the first place, the

fuselage can be so designed as to carry no load except in the region of the

wing; secondly, we know") that the thickness of the wing and fuselage

together can be so designed, mainly by fuselage shaping, that the wave

drag due to volume is, to a first order, that of the original fuselage alone.

There is then in effect no wave drag which depends on the volume con-

tained in the wing and on its shape.

Some typical results* are shown in Fig. 6. The drag factors chosen are:


= I. because one would attempt to approach this value of the best


body of revolution of the given length and overall volume; and Kv =

= 1, because one would hope to find wing shapes with nearly elliptic


loading both spanwise and lengthwise. The planform shape parameter,


now refers to the planform of the wing along its surrounding box,


and one would attempt to find shapes with p„- < ',I,. The results in FiR. 6


are twain of the order required from earlier performance considerations.


They also confirm that the most efficient configurations lie well within


the Mach cone from the nose, and the overall box size is again much the


same as stated above. In addition, we find that the wing itself is also sub-




sonic: There would seem to be no point in going to a sonic leading edge,

* To make the results roughly comparable with those for the other layouts, a fuselage
of 180 ft length has been chosen with an overall volume parameter T = 0.06; and a wing
area of 3600 ft2. CDF = 0.036 instead of about 0.003 because of the relatively larger
wetted area.
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say. (We may mention here that, for a sonic or supersonic leading edge,


the values of the drag factors assumed are too good so that the actual

D-values must be expected to be lower than those shown.) Near the

maximum values of LID, the Mach number component normal to the

line of sweep is again around 0-7 and thus the classical aerofoil flow again

offers itself as one which is both consistent with the assumption made

in arriving at these results and also usable in engineering practice.
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FIG. 6. Lift-drag ratios of swept wing-body combinations AI = 2 ;I 0.06

	

Cdf =  0.006  S — 3600  FT 2 Ko — 1 K„.i„o - - I.

Having stipulated the general layout and the type of flow, the design

aims are clear. The planform shape; camber and thickness distribution of

the basic section which must again conform to Bagley's criterion, Fig. 5;
and further, the spanwise variations of thickness, camber and twist; the

shapes of the upper and lower wing-fuselage junctions; and the shapes

of the fuselage cross-sections and of its own camber line can all be used

to this end. The development of the three-dimensional boundary layer

and the occurrence of shock waves on the wing appear to be the main

4

2
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stumbling blocks, tending to introduce additional separation lines. But
we can now state with some confidence that these aims can be achieved,
at least up to Mach numbers around 2 or 3. A great deal of background
research in this field has now been done and is being summarised by
Bagley"). The results of work on the aerodynamic design of sections, wings
and bodies will be reported later at this Congress by Lock and Rogerso),
and Pearcey").

If the design for an efficient cruisc performance appears feasible, it
remains to consider the off-design conditions. Here, the obvious aim is
to preserve what is anyway a subsonic type of flow at all speeds. This,
however, is fraught with some difficulties which are the greater the higher
the cruise Mach number. Not only does the angle of sweep increase with
Mach number—from around 30° for  M =  0.8 to around 55° for  M =  1.2
to between 70° and 80° for  M=  2—but also the whole shape is so radically
affected by the cruise design as the Mach number goes up that the aircraft
may no longer be fit to be flown at low speeds. To provide for a change
of sweep angle with flight speed by means of "variable-sweep" schemes
seems to have a great attraction for mechanical engineers but it must be
borne in mind that sweep is only one shape parameter among many others
which cannot be readily undone.

Nevertheless, designs up to cruise Mach numbers in the low supersonic
range, up to 1.2 say, appear to be quite feasible all round and we have,
therefore, come to regard the swept-winged aircraft as the logical extension
of the classical aircraft into the low suNrsonic speed range, doing away
with the "sound barrier" altogether. Aerodynamically, it has the same
general layout, with separate means for providing volume, lift, and pro-
pulsion, and the sante type of flow as the classical aircraft. Structurally,
too, it does not radically differ from its predecessor and we might mention,
for example, that the "structural thickness-chord ratio", (rc),cos  cp,  and
the "structural aspect ratio",  As,  determined from the actual length of
span along the mean line of sweep and the mean chord normal to the line
of sweep, may remain roughly constant and independent of flight Mach
number and angle of sweep for aircraft with the same range. If  t  and
(t c)  cos 9 are kept constant, then  As= A cos2  9,. If also, as a rough rule,
M  cos q = OE7, then  As= 2AM2.  Further,  A  is proportional to  1/M2
if  MI. D  is to remain constant, by equation (7), so that  As  does indeed
not change to a first order.

This line of development is already actively pursued at the lower sub-
sonic Mach numbers and aircraft exist, which have been designed on these
lines known to us for some time('°). There can be little doubt, that this
will be pursued further in time. But we we have not yet discovered a really
promising solution for higher supersonic speeds and even though Fig. 7



Aircraft Shapes and their Aerodynamics 239

shows again in typical examples that the yawed wing and the swept wing-
fuselage combination offer a satisfactory cruise performance on paper
at  M =  2, neither is really attractive at that or higher speeds. Now, Fig. 7
contains still another curve, for slender wings, with again the same per-
formance, and it is these that we want to consider next.
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FIG. 7. Lift-drag ratios of three configurations at M =  2.

7. Slender Wings

A slender wing is a particularly simple shape to fit into the rather narrow
boxes required at higher supersonic speeds. Slender wings are understood
here to mean wings of near-triangular planform with subsonic leading
edges and supersonic trailing edges. The leading edge is in general curved,
with streamwise tips because this helps in designing for low drag factors.

The trailing edge may be slightly swept. The value of the planform para-
meter  p  lies around V, and is not likely to be smaller than 1/3 or greater
than 2/3. For the box sizes of interest, the wings may be regarded as both
geometrically slender, i.e.,  sI I 1 ,  and aerodynamically slender, i.e.,
gsll < 1.  That the box sizes obtained earlier still apply is demonstrated
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in Fig. 8 where a wide variation of drag factors and planforms lead to
only a small range of or  16s1l, in which the highest L/D-values lie.

Now, the type of flow past these slender wings is the first to be funda-

mentally different from the classical aerofoil flow but it has the same
general features which make it equally acceptable for engineering pur-
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poses. Its main characteristics are the primary separation from all edges,
leading to the formation of vortex sheets, at all flight conditions; and the
absence of shock waves over the wing surface, at least under cruising
conditions, as shocks are confined to a weak bow wave and another weak
shock system behind the trailing edge, perturbations of the mainstream

being genuinely small for once. As in the classical aerofoil flow, the ex-
ternal stream is predominantly inviscid and viscosity effects are confined
to a thin layer with boundary-layer properties and to thin vortex sheets.
The latter are above and close to the upper wing surface and constitute
the main distinguishing feature. For the vortex sheets to be firmly an-

chored to the edges under all flight conditions, the edges must be geo-
metrically and aerodynamically sharp. These flows have been found to be
perfectly steady within the required flight range.
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The main features of this flow have been first described by Roy(") and
Maske1102) and Maskell and Weber"3) have considered it and the aero-
dynamic design principles involved in some detail. This type of flow must
neces2,arily include one condition (i.e. one value of CI and M), under
which the leading edges are attachment lines. Above or below this Ccvalue,
the vortex sheets lie either wholly above or wholly below the wing. This
occurs at CL = 0 with symmetrical wines and at CL 0 with cambered,
or warped, wings. To achieve this attachment at one CL is one of the
important design conditions. The flow then happens to be the same as
that assumed in supersonic linearized theory, with trailing-edge separation
only and a near-planar trailing vortex sheet. This appears to be one of
the few cases in which this otherwise hypothetical flow has a real counter-
part in nature. Thus a considerable body of theoretical work becomes
available for the purpose of designing slender wings, notably the work
of Ward and Lighthill (11,16),Weber"5) and R. T. Jones"), Lord and
Brebneruu) and others.

Some indication of the cruise performance of these w ings is gi% en in
Fig. 8. The dashed lines are based on the assumption that the factor Ko

into the zero-lift wave drag can always be kept below unity, thus making
use of Lighthill's theoretical prediction("). For simplicity of presentation the
lift-dependent drag factors are taken to be equal and to have a value which
must be considered as rather good (Kr = K, =1-1 for p =  1/2). Good values
of L'D, amply sufficient for lona-range aircraft, are then achieN ed
with wings in the whole p-range, although there remains an incentive
to use wings with a low value of p. The full lines are based on the same
assumption for K, but on less favourable assumptions for the lift-dependent
drag, typical for wings where the camber is not very effective. Obviously,
an efficient camber is worth striving for. Lastly, the thick line is obtained
if K, is assumed to vary with p in such a way that it increases as p de-
creases, as an indication of increasing difficulties in the design. In this
case, the distinction between wings of different p-values disappears and
wings with lower p-values no longer offer an advantage. But even in
this case, the performance is acceptable for long-range aircraft. With this
potential performance, together with a perfectly usable type of flow, there
is hardly any incentive left to try to make yawed or swept wings work
at higher Mach numbers, as they do not offer a better performance. There
is no incentive to use current conventional layouts, as their performance
is certainly inferior.

There is unfortunately no time left to discuss the important and interesting
low-speed aspects of slender wings in any detail (see e.g. Thwaites")).
The main feature is, of course, that the coiled vortex sheets above
the w ing produce a non-linear lift force which may be considerably greater

Is
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than the linear lift obtained on wings with trailing edge separation only.
In practice, this non-linear lift makes a good take-off performance and
low approach speeds possible, in spite of the low aspect ratio these wings
have. How much the non-linear lift matters may be demonstrated by
assuming the lift to be of the approximate form

C"I = Aa+2a2  = cr a+2a22 (17)

and determining the wing area needed to sustain a given overall weight

L  at a given dynamic head  q  and angle of incidence a. This comes out as

lq 1
S =

L
	  (18)

2a  sll a

2p — :7T

where the term

Llq
cc=

2aa

is the area needed with an unswept wing of infinite span. Values of  S1S,,
are shown in Fig. 9, where the upper curve indicates the increase in wing
area, which is necessary if  sll  is reduced in the case of linear lift only,
whereas the lower curve includes the non-linear lift obtainable at a =
as an example. However, this curve still rises as all is decreased or the
design Mach number increased, but it must be borne in mind that some
increase in wing area, or decrease in wing loading, will be needed anyway
because the faster aircraft will also fly higher. Since, further, the decrease
in sill Nsith  M  may well be less than indicated in Fig. 8, there is no undue
discrepancy between low-speed and cruise performances on this count
alone. There are, however, other problems, notably in the field of flight
dynamics, which we have no time to discuss here.

We turn now to a brief discussion of some of the aerodynamic problems
which are typical of slender wings. The shedding of vorticity from side
edges presents a new kind of problem altogether. Early work in this field
is discussed by Thwaites(2), and Maskell"8) has established similarity
laws for the initial rate of shedding of vorticity for conical bodies as it
depends on the angles of incidence and sweep, on the edge angle and its
droop, and on the cross-sectional shape. The first of these—that similar
flow s are obtained when  al(s1l)  is the same—is already well-known. Ob-
servations of non-conical flow patterns, including some which lead to
an asymmetric shedding of vorticity, have been described by Maltby(19).
The results of this work have a bearing on a variety of aspects: on flight
dynamics, on forces and moments, and also on vortex drag. We note,

(19)
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for example, that K, = 1 can no longer be regarded as a lower bound,
as it relates to the minimum vortex drag for wings of given overall lift
and span, which leave a plane sheet of trailing vortices behind them,
whereas the shape of the sheet behind slender wings is essentially non-
planar.
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Another set of problems is concerned with the development of the
boundary layer which is essentially three-dimensional. New methods for
calculating these must be devised, and the present state of our knowledge
has been summarized by Cooke and Hall(20). Further, new criteria must
be found to define what constitutes pressure fields which are either favour-
able or unfavourable to separation occurring somewhere on the surface,
apart from the separation from the edges. Such secondary separations
are obviously undesirable. The relevant criteria have been established by
Maskel and Weber(13).

Further problems arise when considering the wave drag at zero lift
for thick wings. Lighthill's prediction" that the wave drag can be reduced
below that of the corresponding body of revolution by spreading the volume

6

"ke

4

0

16.
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spanwise has been followed up and typical results, by Weber"6 ), are shown
in Fig. 10. Depending on the slope and the curvature at the trailing edge
of a family of area distributions, the drag factor Ko is found to be bounded
below by an envelope. Then tw o further problems arise: Firstly, the re-
liability of such results, as some of the shapes implied may cease to be
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FIG. 10. Zero-lift wave drag according to slender wing theory for a family of sNings.
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slender and smooth, and as different theories may give different numerical
answers. Secondly, the question of how low the drag factor can be de-
signed to be, as numerical results depend on the particular family of shapes
chosen. Thus optimization procedures appear in a new light and some
of these, such as some popular "area rules", become suspect.

Similar problems occur with regard to the wave drag due to lift and,
as an illustration, Fig. 11 shows some results from an extension of Adams
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and Sears(21) not-so-slender wing theory, due to Weber, for the drag factor
Kw  for a family  L(x)  of loadings along the chord of the wing, which have
different values of the load L(1) at the trailing edge and different positions
x of the centre of pressure. Again, the curves are bounded below byC. Q.

an envelope and some of the values of  K1,  along this envelope are well
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FIG. 11. Lift-dependent wave drag according to not-so-slender wing theory

for a family of wings.

below R. T. Jones") "lower bound". This kind of result has some bearing
not only on the drag itself but also on the trim problem. Evidently, fore-
planes which invariably introduce a trim-drag penalty and considerable
complications in the flow pattern and flight behaviour are no longer
needed with properly designed slender wings.

To end this discussion of slender wings, we might look at some of the
experimental results obtained. Fig. 12 gives measured values of the
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zero-lift wave drag for a number of wings of different thickness and semi-
span-length ratio, tested in wind tunnels and in free flight. The area distri-
bution is always the same (designated "Lord V"); it is that used in some
of the calculations given earlier, and the experiment is seen to confirm
the assumptions made. It was possible to design these wings to lead to
genuinely small perturbations of the mainstream, in spite of sometimes
large values of the volume parameter, and to have wholly favourable pres-
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FIG. 12. Volume-dependent wave drag for 8 wings.

sure fields. In view of these results, one would call configurations designed

to conform to the conventional area rule  (K,= 1)  wholly unsatisfactory.

Figure 13 gives measured values of the lift-dependent drag for a number
of wings, where  K  is defined in the usual way as

sll CD—Cm
K = 27 .

C2
(20)

so that the points at  fisll = 0 give the values of  Kv  and the slope of the
lines the values of  K.  It will be seen that the values assumed earlier can
indeed be realized and that the drag is considerably less than what would
have been obtained had there been linear lift only and no suction force.
It is of interest to note, that the shape of this particular planform is very
close to the von Kármán ogive and,therefore, the one which R. T. Jones")

O
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has shown to give elliptic span—and chord—loadings (K = K, —  1).

Now even though the flow assumed in that theory cannot be realized
in practice, other flows with almost the same drag values can, and that
in a variety of ways. In the first place, one model tested was cambered
to have attachment along the leading edge at CI = 0.1; linear lift was
then obtained and "full suction" as assumed in the theory. Secondly,
another model was uncambered so that, at CL = 0.1, vortex sheets were
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FIG. 13. Lift-dependent drag factor from experiments by Squire and Evans.

fully developed; non-linear lift was then obtained together with some
suction below the vortex sheets, acting on forward-facing surfaces of
the thick wing. The third model was cambered to have attachment at
CL = OE05 so that at  CL = 0.1 some, weaker, vortex sheets had devel-
oped. That the drag is the same in all cases is, of course, related to the
particular planform and thickness used and need not be repeatable with
other wings.
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8. Conclusions

In conclusion, we may say that it has been shown to be worthwhile

to bear in mind the practical application at an early stage. If the task

is the simplest, namely, to achieve a given range, then even the crudest

knowledge of the structural, propulsive, and aerodynamic components

of an aircraft is sufficient to define some overall dimension into which

the aircraft must fit. We have seen that, in the case of the classical aircraft,

this leads to the conclusion that we need to concern ourselves only with

wings of moderate or large aspect ratios. In the case of supersonic flight,

with different means of propulsion and a new set of aerodynamics, this

leads to the definition of box sizes with certain relations between span
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and length, into which the aircraft must fit. These boxes are always longer


than wide and become nartower as the design Mach number goes up


so that the aircraft lies always well within the Mach cone from its nose.

The next important step is to find shapes to fit into these boxes with

a suitable type of flow which not only leads to the required performance

but is also acceptable for engineering purposes in that it is a real flow,

steady, and preferably the same throughout the flight range. We have

recalled that the classical aerofoil flow suits these conditions perfectly

but that it is also limited to just the classical aircraft layout and to essen-

tially subsonic flight speeds. We have then seen that the regime of this

flow and layout can be extended to low supersonic flight speeds by making
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use of sweep. And, finally, we have discussed an entirely new type of flow,

that past slender wings, and shown that this leads to a natural solution

for supersonic aircraft.

As we have been mainly concerned with examples at lower supersonic

speeds and at Mach numbers around 2, we would end with a last Fig. 14,

which gives box sizes and expected aerodynamic performances for slender-

wing layouts up to higher Mach numbers. Lines along which LID
8 for r = 0.04 are closed at the lower end by a curve along which  L'D

varies in a manner which is typically needed to balance the loss of pro-

pulsive efficiency of turbojet engines as the Mach number decreases.

Within this band lie all the wings which give a better performance or

allow a greater volume. Such a diagram gives not a few pointers to future

developments and makes it clear at the same time that the aerodynamic

design of supersonic aircraft is, as always, as much a matter of low-speed

aerodynamics as of high-speed aerodynamics. But whereas we can see

real aircraft emerge now at the lower Mach numbers, the higher speeds

will demand not only the integration of volume and lifting surface but

also of propulsion. We also realize that research into fluid dynamics and

chemical kinetics must go together with that into structures, materials

and systems. There can be little doubt, however, that human flight will

in time far exceed its present limitations.
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DISCUSSION

G. H. LEE: Dr. Küchemann has referred to the possibilities of the yawed aerofoil
as a configuration for supersonic flight. My Company has given some consideration
to this idea recently and I would like to present to you, briefly, some of the results we
have obtained, for I think that an International Conference such as this is a suitable
occasion for discussing new aircraft concepts, even though, as in this case, the idea
may seem bizarre at first sight; it was, after all, at the first I.C.A.S. in Madrid that
R. T. Jones introduced the yawed wing idea to many of us for the first time.

As we see it, the yawed wing aeroplane consists of a wing large enough to contain
the passengers within the basic aerofoil contour; this means that it must be a fairly
large aeroplane, probably at least 300 ft. from tip to tip. The crew v,ould be housed
in a nacelle (or small fuselage) at the forward tip and there would be a fin at the rear-
ward tip to give directional stability. Control would be obtained by means of "ailerons"
(capable of moving symmetrically or anti-symmetrically as required) and a rudder.
The engines would be mounted near the centre of the trailing edge.

The yawed wing is not only an efficient aeroplane when cruising supersonically,
but should be thought of as the ideal solution to the problem of variable geometry
since the angle of yaw can be changed in flight, the main loads being supported on
a perfect "air bearing" with only secondary loads having to be taken through mechanical
bearings; for to change the angle of yaw, it will be necessary only to change the angle
of the fin, to rotate the crew cabin and to alter the angle of the jet issuing from the
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engines by means of some sort of adjustable propelling nozzle. This should be compared
with "conventional" variable geometry aeroplanes in which major loads have to be
taken through mechanical joints, with consequent problems of design, extra weight,
and maintenance. The yawed wing indeed poses some aerodynamic problems, but once
these have been overcome, the solution is permanent; the air does not need maintenance.

M 0

L /D

14

13

12

Il

10

9

\4 131—
ss, •- HANDLEY P E

3" \I , ••
eZ" \

'•

R.A.E.

\
•

V

t.

7
65° 700 750

ANGLE OF YAW0

Flo. Al.

To deal first with the basic cruising performance, we have estimated, at M-2, the
performance of the wing already considered by Küchemann (see his Fig. 4) by regarding
it as sufficiently yawed to be sub-critical in the flow normal to the length of the wing,
it being assumed that at the forward tip the crew nacelle is waisted and at the rear tip
a body associated with the fin is similarly treated so as to maintain the sweep of the
isobars for the length of the wing; in this way the wing is shock free, the shock waves bcing
associated with the two tip bodies, for which a drag allowance was made. Using this
method, the results shown in the first figure were obtained. It will be see that agreement
with the RAE estimates is fair and it may be concluded that for the Mach number
in question, namely 2.0, a ration of  LID = 11.0 may be expected for a yawed wing
of practical proportions. (Note the shaded line indicating angles of yaw below which
the normal Mach number will exceed the critical.) This figure,  LID =11.0, may be
compared with the typical value LID —  9.0 for a slender wing at  M=2.0.

In further support of the above, we have tested a yawed wing at low speed in a wind
tunnel, and for angles of yaw of about 70' obtained a low induced drag, K. of Küche-
mann's paper being close to unity.
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However, a supersonic aeroplane spends much of its time flying non-supersonically,
(for take-off and landing, climb, stand-off, etc) and it is in such phases that variable
geometry pays. Subsonically, the yawed aircraft flies best at M 0.34, with 300 of
yaw and with  LID =  24, far higher than a slender wing under comparable conditions.

Taking, as an example, an aeroplane of 350,000 lbs. A.U.W. capable of transatlantic
flight at M 2.0 and it will be found that the payload (of passengers) is 24,000 lb (120
passengers) for the slender wing arrangement. The improvement that would accrue
to the comparable yawed wing aeroplane, on account of better subsonic performance
alone, is an increase of 50%, in the payload, namely another 12,000 lbs.
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FIG. A2.

The full comparison* is shown in Fig. A2, from which it is seen that, at the best,
the yawed wing can carry twice the payload of the conventional aeroplane; even accepting
Kiichemann's statement that the two types have the same supersonic cruising performance
(both having  L/D  10, see his Fig. 7), the better off-design performance of the
yawed wing still gives 50% more payload, a worth while increase. (N.B. In Fig. A2.
"Effective  L!D"  allows for the better off design performance of the yawed wing and

L M
should be used in comparisons based on the Breguet range parameter — • —).

D C
At M =5.0, RAE estimates indicated no significant difference in cruising 1_,T) between

the slender and yawed wings (about in both cases) but because the optimum slender
wing has an aspect ratio of only I '3rd at this Mach number, such a wing would be poor
in the climb or during stand-off and would need either variable geometry or V.T.O.;
hence the yawed wing will gain greatly from its good subsonic performance at small
angles of yaw when considered for operation at the higher Mach numbers.

To conclude, the yawed wing concept looks strange and will present many problems
for solution, bdt it seems to offer the prospect of valuable performance gains.

* Assuming equal Basic Equipped Weights, a reasonable assumption since both
wings are of fairly simple geometry, while the smaller engines of the yawed wing will
offset such variable geometry as it has.




